Control number: 94

MCM 1994 Problem B
Network File Transfer Scheduling
1. Restatement of the Problem

Our company has a network of computers which must share information (contained in files) on a regular
basis. Tt is known which computers must share with others, and how long each “sharing” (file transfer) takes.
Also, some computers might have the ability to carry out more than one transfer at a time.

Our task is to schedule the file transfers in such a way that the total time required is a minimum. This
minimum total time is called the “makespan” of the network.

2. Assumptions

Rational Time: Any time expressed in this problem or its solution will be rational. This is because it is
impossible to measure an irrational time in the real world.

Discrete Time: Because all times are rational, any time in this problem or its solution may be expressed
as an integer multiple of some fundamental time quantum. This quantum may be taken as the largest value
such that all transfer times are integer multiples of it.

Bidirectionality: In any given file transfer, it is not significant which computer is sending or receiving.
As long as a computer is doing either, it is listed as “involved” in that transfer.

Negligible Overhead: The times as listed are for the actual transfer of data. The time it takes to
start/stop a file transfer is negligible. Therefore, if a computer is involved in a transfer from time 0 to 1,
and a different transfer from time 1 to time 2, there is no conflict at time 1.

Transfer Continuity: Once a transfer is started, it must run to completion. That is, a file of length 2
may not be transferred from 0 to 1, stop, and finish from 3 to 4. The negation of this assumption is discussed
in Appendix B.

Physical Connectivity: The diagrams given indicate only necessity and possibility of file transfers. They
do not contain any other information about the physical setup of the network.

3. Motivation for the Model

Any situation in which nodes (computers) must be connected to each other reminds one immediately
of graph theory. This is true particularly when each connection must have a value associated with it, like
weighted edges on a graph. The assumption of Bidirectionality implies that one might as well forget about
file transfer directions altogether. Therefore, an undirected, weighted graph would be appropriate.

4. Design of the Model

Because nothing is known of the physical setup of the network, the undirected weighted graph consists
of the necessity graph for the network. That is, each node in the graph corresponds to one and only one
computer. Each edge connecting two nodes corresponds to exactly one necessary file transfer, and the weight
on that edge is the time required for that transfer, in time quanta (forcing the weights to be integers).

The N nodes are enumerated 1...N, and node 7 is denoted by V;. The number of simultaneous transfers
node ¢ can do is denoted by 7;. The weight on an edge between nodes ¢ and j is denoted e; ; for all ¢ and j
(Note that this looks similar to, but is different than, the notation in the official problem statement.) The
value of e; ; is defined as follows:

time to transfer file between V; and V; i # j, Vi connected to Vj
eij = { 0 i # j, Vi not connected to Vj
0 =7
A schedule is a function from an ordered 3-tuple of integers into the set {true, false}. Tt is defined as
follows:
S:(Zn, Zn, Z) — {true, false}
S(ij 1) = true if a file is being transferred between V; and V} at time ¢
e false otherwise

In this way, a schedule may be represented as a 3-dimensional array of Booleans, with one dimension
(time) infinite. A somewhat smaller way to represent a schedule is as a set of ordered integer 4-tuples
(start_time, end_time, node_a, node_b), which effectively says that the edge connecting node_a to node_b will
be transferring a file from time start_time to end_time.

Page 1 of 17

Control number: 94

A solution 1s defined as a valid schedule. That is, a solution successfully transfers all files, and no node 1s
ever overloaded. If we let 7(s) = total time for solution s to complete, then makespan = min
The set of all s that achieve this minimum is the set of optimal solutions.

vsolutionss 7(s).

Please see Appendix C for properties and definitions related to this model.
5. Testing the Model

In the problem statement, three situations were presented to apply the model to. Their solutions are
presented here. In all cases, the numbers of the vertices are arbitrary, so they were omitted.

Situation A

The following graph represents the systems under consideration and the transfers that must be made
between them. Each of the 28 nodes represents a departmental computer, and each of the 27 edges represents
a file transfer that must be made daily.

One unit of time is required for each file transfer, a file transfer involves both sender and receiver, and a
computer can only be involved in one transfer at a time.

Some of the nodes in this graph have degree three; hence, they will be involved in three file transfers.
Since each transfer requires one unit of time, these nodes will require at least three units of time to complete
all the necessary transfers. Consider the three sets of edges in the graph represented by the solid, dashed,
and dotted edges in this representation of the graph:

Page 2 of 17

Control number: 94

! ’
! ’
1 ' ®
. 1 4
o=-=-==-@ -
2
"’
L4
.
K4 “ RN
. .
. . . | J
’ . Phd
’ .
() .—.
—o
1
1
"' !
. 1
[2 (]

Note that no two edges of the same type are incident upon a single node. Hence, all the file transfers
represented by the solid edges can be performed simultaneously, as can those represented by the dashed
edges and those represented by the dotted edges. Performing the transfers along the solid edges, followed
by the transfers along the dashed edges, and finally those along the dotted edges will require three units of
time. As we have seen, at least this much time is required to perform the transfers. Hence, performing the
transfers in this manner is optimal. The makespan is therefore three.

Our approach to this problem takes advantage of several properties of this special case. The graph 1s a
tree with maximum degree three. Since each transfer takes 1 unit of time, we do not need to worry about
transfers overlapping in time. They are either simultaneous or completely disjoint. Also, each computer can
only handle one transfer at a time. So during each interval of time, the active edges represent a matching
of nodes, that is, they are vertex disjoint copies of Ko (the complete graph on 2 vertices). Because this
tree is of maximum degree 3, such a matching is easy to find. Starting with any leaf, we traverse the tree.
Whenever we come to a vertex not involved in a transfer, we select an adjacent vertex that has not yet been
visited. We add the edge between these two vertices to the set of edges which will execute on the first step.
This traversal guarantees that all the nodes not involved in transfers are leaves.

After the first time interval, we will be left with only paths. By choosing alternating edges we can finish
in 2 more units of time.

This approach will work on any tree with maximum degree 3 for which transfers require one unit of
time and for which each computer can only handle one transfer at a time. So a tree with these properties
will have a makespan of 3.

From this analysis, we can see that there are clearly multiple ways to choose the individual edges, since
there will be many arbitrary choices regarding which edge to include. Hence, the given schedule is not a
unique solution.

This approach depends heavily on certain aspects of the problem, and therefore will not work in the
general case in which the graph, transfer times, and node capacities are arbitrary. Indeed, finding the
makespan for the general case will prove problematic, since the general problem is NP-complete. (See
Appendix A for a discussion of this.)

Page 3 of 17

Control number: 94

Situation B

Consider the graph from Situation A, but with the required transfer times as indicated below:

Note that this contains the graph

The presence of the three transfer times of 7.0 around the central node of this graph implies that 21.0 units
of time is a lower bound on the amount of time required to perform all the transfers. Consider the edge with
value 7.0 that is handled second. At least 7.0 units of time are required both before and after it to handle
the two other 7.0-valued edges. Furthermore, since it has a vertex in common with an edge of value 9.0, 9.0
units of time will be required either before or after it. Hence, at least 7.0 + 7.0 + 9.0 = 23.0 units of time
will be required, regardless of whether the 9.0 i1s transferred before or after the second 7.0. So this graph
requires at least 23.0 units of time.

Now consider the effect of starting with the transfers indicated here by dashed lines, and letting all these
transfers run to completion (which takes 9.0 units of time):

Page 4 of 17

Control number: 94

4.4

When all these transfers are complete, we will have the following transfers remaining to perform:

4.4

45

The time required to finish the transfers at this point will be the maximum of the times required to handle
the individual subgraphs that remain. Note that all of the remaining subgraphs with two edges can be
finished in 10.2 units of time or less. The path

Page b of 17

Control number: 94

32

Can be handled in 5.0 + 2.4 = 7.4 units of time by performing the transfers indicated here by dashed lines,
then those indicated by solid lines. The final path

Can be handled in 7.0 + 7.0 = 14.0 units of time by performing the transfers indicated by dashed lines
followed by those indicated by solid lines.

So the transfers that remain after we handle the first set specified will take 14.0 units of time to complete.
Since the first set required 9.0 units of time, performing all the transfers in the manner described will require
9.0 4 14.0 = 23.0 units of time to complete. Since we have seen that at least 23.0 units of time are required,
this solution is optimal. So the makespan is 23.0

This problem was solved in a similar manner to the first problem, in that a maximal matching was
chosen initially. However, the assumptions about execution time from Situation A are no longer valid. So,
to some extent this solution comes from the “guess and hope” method—the initial matching was chose to
quickly get many large transfers out of the way. It then turned out that the remaining pieces could be
handled in a manner which achieved a value which was known to be a lower bound. To obtain this lower
bound, it was important to notice that the obvious lower bound of 21.0 units of time was unattainable
because of the arrangement and values of some of the edges.

The general case i1s naturally still NP-complete, so this approach will certainly not work in general. In
fact, this graph falls into a more specific case, that where the graph is a tree and each node has capacity 1,
which is also NP-complete despite the additional restrictions. (See Appendix A.)

Page 6 of 17

Control number: 94

Situation C

We now have the following graph, which happens to contain the graph from situation B. Also, some
nodes are now capable of transferring more than one file at a time. Nodes with this ability are shown here
with the number of simultaneous transfers they can handle.

One of the nodes in this graph has to make three transfers which require 7.0 units of time, and one which
requires 6.1 units of time. Hence, a total of 27.1 units of time are required for this node to finish its transfers.
It follows that 27.1 i1s a lower bound on the time required to finish the transfers indicated in this graph.

Now suppose that we begin by running the transfers indicated with dashed lines, and letting these run
until they are all complete (requiring 9.0 units of time). In addition, let the transfer indicated with a dotted
line begin after 7.0 units of time have elapsed.

Page 7 of 17

Control number: 94

When 9.0 units of time have elapsed, we have the following graph, with the constraint that the transfer
shown by the dotted line must “begin” executing immediately, since 1t is really the continuation of a transfer
started earlier and therefore cannot be interrupted:

The isolated edge can then be finished in 6.6 units of time. The left component can be finished in 11.4 units
of time by first running the edges indicated here with dashed lines (requiring 4.1 units of time), then those
with dotted lines (requiring 5.2 units of time), and finally the solid edge (requiring 2.1 units of time):

52

To handle the large component, let the transfers indicated below with dashed lines run to completion (note
that this obeys our requirement that the transfer already in progress continue running):

Page 8 of 17

Control number: 94

So after 5.0 units of time beyond the initial 9.0, we are left with the following graph:

Let the transfers indicated by the dashed edges above run to completion. Consider the graph after 6.1 units
of time have elapsed. We then have the following, where again the dotted edges must be running initially,
since they represent the continuation of transfers:

Page 9 of 17

Control number: 94

o ——©
3.7

Both isolated edges above can be completed in 7.0 units of time or less. The other two remaining graphs
can be handled in 1.0+ 1.0+ 3.2 =5.2 and 0.2+ 4.4+ 2.4 = 7.0 units of time. Everything that remains at
this point can therefore be completed in 7.0 units of time. So handling the large component that remains
after the initial round of transfers requires 5.0 + 6.1 + 7.0 = 18.1 units of time. This 1s the largest of 6.6,
11.4, and 18.1, so to complete everything that remains after 9.0 units of time have elapsed will require 18.1
units of time. Hence, the total time required to perform these operations is 9.0 + 18.1 = 27.1 units. Since
we have seen that this is a lower bound on the time required to perform the transfers, the given schedule is
optimal.

Our solution for this problem was found in essentially the same manner as that for Situation B, namely,
start guessing and see if it works. Though this graph is more formidable, it is helpful that the obvious lower
bound of 27.1 can be achieved. The only obvious category for this problem is the most general case, which
is NP-complete. Hence, it is extremely unlikely that any efficient algorithm exists for producing solutions to
scheduling problems of this variety.

6. Strengths and Weaknesses of the Model

Graph models are usually easy to program, because so much work has been done with graph theory.

The model allows integer arithmetic for almost everything, due to the time quantum. This almost
eliminates any roundoff errors (some may happen during efficiency calculations), and does eliminate iterative
error growth.

The assumption of Transfer Continuity is a weakness in that it limits the makespan of some graphs.
Appendix B deals with what can happen without it.

The assumption of Physical Connectivity allow the model to completely ignore the underlying hardware.
This can be seen as either a strength (less processor time) or weakness (no error checking), depending on
the reliability of the network.

Page 10 of 17

Control number: 94
Appendix A: NP-completeness of Makespan Determination

Consider the following special case of the general problem of finding the makespan for an arbitrary
network:
Let G be a tree representing a network, with times 77,75, ..., T} assigned to its k edges.
If we interpret each edge to represent the time required for a file transfer between two
nodes, what is the minimum time in which all the transfers can be performed, given that
no node can be involved in more than one transfer at once, and that transfers may not be
interrupted and resumed later?
This is closely related to the following decision problem:
Let G be a tree representing a network, with times 77,75, ..., T} assigned to its k edges.
Let n be a non-negative integer. If we interpret each edge to represent the time required
for a file transfer between two nodes, can all the transfers be performed in time n or less,
given that no node can be involved in more than one transfer at once, and that transfers
may not be interrupted and resumed later?
If we can solve this decision problem, we can simply try it for each successive value of n until an answer of
“yes” is obtained. We are guaranteed to eventually reach such an answer, since no graph can require more
than > 7; units of time to complete its transfers.

Theorem: The decision problem given above is NP-complete.

Proof: We will prove this by reducing from the partition problem, which is:
Given integers aq,as,. .., ay, 1s there a partition of these integers into sets A and B so
that Za,EA a; = Za,EB a;”?
The partition problem is NP-complete (Garey and Johnson 60).
Let an instance of the partition problem be given, with integers a1, aa, ..., am. If > a; is odd, then there
cannot be a partition into two sets with equal sum. So suppose) a; is even. Take n so that 2n =) a;.
Now construct a tree with the following structure and edge weights:

Suppose the transfers indicated in this graph can be performed in 2n + 1 units of time. This implies
that the two nodes with edges of values n and n 4 1 will spend the entire time engaged in transfers. So
they can each either perform the n unit transfer followed immediately by the n + 1, or the n + 1 followed by
the n. If they both perform the n 4+ 1 first, then the n unit transfers will not be possible at the same time,
because they are incident upon a common node. This means that at least (n+1) + n+n = 3n + 1 units of
time are required, which contradicts our supposition that the transfers can be performed in 2n + 1 units of
time. Similarly, if both n unit transfers are performed first, the n + 1 unit transfers will not be possible at

Page 11 of 17

Control number: 94

the same time, and n+ (n+ 1) + (n + 1) = 3n + 2 units of time will be necessary. Hence, one of the n + 1’s
must be earlier, and the other must be later. This means that the only time that the 1 unit transfer can be
performed is in the one unit of free time between the two n’s.

It then follows that the node connecting the a;’s is occupied from time n to n 4+ 1 (assuming the clock
starts at time 0). Since > a; is 2n, this node must also be continually engaged in transfers. So the durations
of the transfers it performs before handling the 1 unit transfer must sum to n, as must the durations for
those performed after the 1 unit transfer. Let A be the set of the durations for the transfers handled in the
first half; let B be the set of the durations for the transfers handled in the last half. A and B constitute a
partition of ayi, as, ..., amy, and

Zai:n:Zai

a;€EA a;,€B

So if this graph can perform its transfers in 2n 4+ 1 units of time, there i1s a partition of ay,as, ..., a,, such
that Za,EA a; = Za,EB a;.

Now suppose that there is such a partition into sets A and B. As before, if the 1 unit transfer is run
at the halfway point we can run the two n + 1 transfers, the two n unit transfers, and the 1 unit transfer in
a total of 2n 4+ 1 units of time. The node joining the a;’s 1s then available for n units of time before the 1
transfer, and n units of time afterward. We can handle the transfers corresponding to the elements of A in
the first n-unit interval, and those corresponding to B in the last n-unit interval. So if there is a partition
of aj,as,...,a, into A and B such that Za,EA a; = Za,EB a;, then the corresponding graph can perform
its transfers in 2n + 1 units of time.

Hence, the desired partition exists if and only if the corresponding graph can be executed in 2n+ 1 units
of time.

Given an instance of the partition problem, the time required to produce a description of the correspond-
ing graph is clearly of polynomial order in the size of the input. So the partition problem is polynomial-time
reducible to the graph scheduling problem. Also, if we are given an integer N and a proposed schedule for
any graph, we can test in polynomial time whether it is a valid schedule requiring no more than time N by
verifying that no node is ever involved in two transfers simultaneously, and checking if any transfers happen
after time N. Hence, the graph scheduling problem described above is NP-complete. "

It then follows that any more general formulation of the scheduling problem is also NP-complete. In

particular, allowing arbitrary graphs, multiple file transfer capability, or both results in an NP-complete
problem.

Page 12 of 17

Control number: 94
References

Garey, Michael R. and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. New York: W.H. Freeman and Company, 1979.

Page 13 of 17

Control number: 94
Appendix B: Improving Network Performance

The assumption of Transfer Continuity has a very limiting effect on the makespan for many networks.
In many cases, a node 1is idle for, say, 7 minutes, and has a file that takes 10 to transfer. This opportunity
is lost, and the 10 minutes are tacked on the end of its task list. If files could be fragmented, though, only
3 minutes would be added. These time savings could occur at many nodes on the graph.

Important to this section is the assumption of Negligible Overhead. If fragmenting a file into two parts
incurred twice as much overhead, performance could suffer.

It is clear that an algorithm that did not assume Transfer Continuity (henceforth called the Fragment
algorithm) would produce a solution at least as good as one that did, because Fragment could always revert
to a solution that happened to have no files fragmented.

Fragment would have the opportunity to disregard what previous time steps had done. For an example,
the solution to Situation C, above, at one point had “the constraint that the transfer shown by the dotted
line must “begin” executing immediately, since it is really the continuation of a transfer started earlier and
therefore cannot be interrupted”. Fragment could reject the continuation of this transfer if it determined
that a different transfer would be more efficient for that node.

Here is a possible Fragment algorithm, in pseudocode: While there are edges left For
each node in the graph compute an “urgency”, such as the sum of the weights of all edges
at that node.

While there are free nodes Find the most urgent node, V; Find the edge to its most
urgent, non-busy neighbor V; Add that edge to a list of active edges this iteration Mark
both nodes as having one more transfer active (in the case T; > 1 or T; > 1) Keep track
of how short the shortest edge is for this iteration

For each edge in the “active edges this iteration” list Output part of a schedule saying
that this edge was active at this interval Decrease time left on edge by shortest time this
iteration

The collection of the output schedules then forms a solution to the graph.

Page 14 of 17

Control number: 94
Appendix C: Consequences of the Model

Given an arbitrary graph that fits the model,
Property: (Vi,j € Zn)[es ; = e;,:] This follows from Bidirectionality and the definition of e; ;
Property: There exists a solution s. One may construct a solution in the following manner:
Enumerate the edges 1... M. Run edge 1 to completion, with no others running. Then run
edge 2, and so forth. This will complete every edge, and no collisions will happen. Note that this
is not a very good solution.

Definition: If s is a solution, then the “time reversal” of s, denoted s”, is as follows: if s is

listed as 4-tuples (as suggested above), the i’th tuple is (start;, end;, a;, b;). Create s” by forming
a list in which the i’th tuple is (7(s) — end;, 7(s) — start;, a;, b;).

Property: If s is a solution, then s” is a solution. If two transfers didn’t conflict, they won’t
conflict if done in reverse order. If all transfers completed, they will complete when done in reverse
order.

Property: Tt is not necessarily true that s = (s")" If s has some time at the beginning when
all nodes are idle, then upon time reversal, 7(s) will shrink by that amount of time. Subsequent
reversal thus takes place in a smaller interval.

Definition: the extremely naive lower bound on T(s) is

max €ij
i,j€E{1..N}

Obviously, the total time can be no smaller than the largest single edge time, since negative times
are not allowed.

Property: There exists an optimal solution s* Because time was quantized, any graph that
fits the model has a makespan that is an integer times the time quantum. That is, effectively, an
integer. Let S = {s: sisasolution}. S # () because there is a solution, as constructed above. Let
7(S) = {r(s) : s € S}. Then 7(5) is a nonempty set of integers, bounded by the extremely naive
lower bound as above. Then 7(S5) has a least element (by definition, the makespan). This least
element has at least one solution s* for which 7(s*)=makespan. This s* is therefore an optimal
solution.

Property: If s* is an optimal solution, then (s*)" is an optimal solution. Thus it is possible
to have a nonunique optimum. By inspection, an optimal solution has no time when all nodes are
idle. Therefore, 7(s*) = 7((s*)") and (s*)" is optimal.

Definition: the naive lower bound on T(s) is

N [

Zj:l €ij

max ——=
ie{1..N} T;

The sum divided by T; is a lower bound on the total time each node must spend active. The total
time may be no smaller than the longest any node spends active. Property: if the graph is a tree,
and is at most binary, then an upper bound on the makespan is three times the naive lower bound.
One can “worsen” the graph so all edges take as long as the longest one, the naive lower bound.
This equalizes all the times. One can also degrade all 7; to 1. The graph now fits Situation A,
which has a known makespan of three times the constant edge length. Since this graph is more
restricted that the original, the original makespan must be less than or equal to the new one. Note:
this not only bounds the makespan, but easily produces a tree that achieves it.

Page 15 of 17

Control number: 94

Appendix D: Algorithm for situation B

No proof was put forth showing that the class of which situation B was an example was NP-complete.
While the general case was shown to be NP-complete, this does not forclude that any given sub-class of the
problem is also NP-complete. Tt also certainly does not restrict a human using poorly understood (intuitive)
methods from coming up with a solution. The restrictions on the class from which situation B appears to
be drawn are: binary tree form, that is every node on the graph has at most measure three and that there
are no cycles in the graph, and each node can only participate in one file transfer. No further restriction is
placed on the edge weight.

Since we do not know that there is not a good, that 1s polynomial time, algorithm for this class, one was
attempted to be developed. The algorithm 1s split into two parts. One part determines which edges should
be chosen initially. The second part propagates these through time and determines when to start the other
edges.

The first part looks for a set of edges which can all be done initially and which get the most done as
early and as compactly as possible. To do this, each edge has an “efficiency” measured for it. This value
is the sum of all edges which can be run currently with the given edge, given by a skip-and-choose-largest
(or “skippy”) algorithm, divided by the maximum time for any edge in that set. The set having the highest
efficiency measure is used for the initial edges to be run.

The “skippy” algorithm for picking a set of concurrent edges to be run initially rests on the assumption
that an internal node should not be left idle initially. A graph was developed which contradicted this
assumption, but 1t was decided to develop this algorithm anyway due to a lack of other alternatives. This
algorithm is considered a greedy algorithm since it tries to pick the largest possible values first.

An edge 18 used as a seed for “skippy.” This edge is guaranteed to be in the set of concurrent edges.
From this edge, the set of nodes which are have transfers with either of the end nodes of the given edge
is generated. All edges connecting the end nodes with any of the nodes in the set are eliminated from
consideration of usable edges. The largest available edge off of each node in the set is determined. This
algorithm is recursively called on that edge, being given the available edges, the used nodes, and a marker
which keeps track of the largest edge. The returned result is added to a running sum of edges. When all
nodes have been dealt with, the weight of the initial edge that was passed is added to the running sum and
that total is returned. In the process of determining these values, the available edge and busy node matrix
has been updated.

Since the function is recursive, it is up to the original caller to do the division by the largest value.
Also, the available edges at the end is the set of edges which was chosen. The set of edges which give the
largest efficiency is retained and used as the initial edges. Once the initial edges have been determined the
propagating algorithm is employed.

The propagating algorithm sets up a schedule with the passed initial edges being started at time zero.
Time is propagated until at least one edge completes. A list is made of the completed edges, and they are
removed from the graph. A list is made of the nodes involved in the completed edges. The nodes which
are involved in a file transfer, and hence busy, at that time are also determined. For each node which just
completed, the largest edge which can be started, that is which connects to a non-busy node, is started.
This cycle of propagating time to the next time an edge stops continues.

This algorithm was applied to situation A and situation B. In both cases, it came up with an optimal
solution, but one different than that presented in the body of this paper. For situation A, the graph looks
like:

Page 16 of 17

Control number: 94

([
where the thin solid lines are started at time zero and finished at time one, the heavy dotted lines are started
at time one and stop at time two, and the medium dotted lines are started at time two and end at time
three. This is an optimal solution, as discussed in the body of this paper.
For situation B, a graph like the following results:

80/124

124/134

70/110
125/161

80/125

80/121

21/151
90/160

70/112

For this graph, the times have been quantized. This effectively means that all times are multiplied by ten from
the data presented in the original problem. Each edge is labeled with two numbers separated by a slash. The
first is the time which the transfer of that edge starts, and the second 1s the time which the transfer of that
edge ends. This is also an optimal graph, finishing the last edge at time 230 (23.0 as presented in the body).
However, it is different in both the edges it chooses to start with and the way in which it proceeds from there.

Page 17 of 17

