
Control number: 94MCM 1994 Problem BNetwork File Transfer Scheduling1. Restatement of the ProblemOur company has a network of computers which must share information (contained in �les) on a regularbasis. It is known which computers must share with others, and how long each \sharing" (�le transfer) takes.Also, some computers might have the ability to carry out more than one transfer at a time.Our task is to schedule the �le transfers in such a way that the total time required is a minimum. Thisminimum total time is called the \makespan" of the network.2. AssumptionsRational Time: Any time expressed in this problem or its solution will be rational. This is because it isimpossible to measure an irrational time in the real world.Discrete Time: Because all times are rational, any time in this problem or its solution may be expressedas an integer multiple of some fundamental time quantum. This quantum may be taken as the largest valuesuch that all transfer times are integer multiples of it.Bidirectionality: In any given �le transfer, it is not signi�cant which computer is sending or receiving.As long as a computer is doing either, it is listed as \involved" in that transfer.Negligible Overhead: The times as listed are for the actual transfer of data. The time it takes tostart/stop a �le transfer is negligible. Therefore, if a computer is involved in a transfer from time 0 to 1,and a di�erent transfer from time 1 to time 2, there is no conict at time 1.Transfer Continuity: Once a transfer is started, it must run to completion. That is, a �le of length 2may not be transferred from 0 to 1, stop, and �nish from 3 to 4. The negation of this assumption is discussedin Appendix B.Physical Connectivity: The diagrams given indicate only necessity and possibility of �le transfers. Theydo not contain any other information about the physical setup of the network.3. Motivation for the ModelAny situation in which nodes (computers) must be connected to each other reminds one immediatelyof graph theory. This is true particularly when each connection must have a value associated with it, likeweighted edges on a graph. The assumption of Bidirectionality implies that one might as well forget about�le transfer directions altogether. Therefore, an undirected, weighted graph would be appropriate.4. Design of the ModelBecause nothing is known of the physical setup of the network, the undirected weighted graph consistsof the necessity graph for the network. That is, each node in the graph corresponds to one and only onecomputer. Each edge connecting two nodes corresponds to exactly one necessary �le transfer, and the weighton that edge is the time required for that transfer, in time quanta (forcing the weights to be integers).The N nodes are enumerated 1: : :N, and node i is denoted by Vi. The number of simultaneous transfersnode i can do is denoted by Ti. The weight on an edge between nodes i and j is denoted ei;j for all i and j(Note that this looks similar to, but is di�erent than, the notation in the o�cial problem statement.) Thevalue of ei;j is de�ned as follows:ei;j = (time to transfer �le between Vi and Vj i 6= j; Vi connected to Vj0 i 6= j; Vi not connected to Vj0 i = jA schedule is a function from an ordered 3-tuple of integers into the set ftrue, falseg. It is de�ned asfollows: S: (ZN ; ZN ; Z)! ftrue; falsegS(i; j; t) = n true if a �le is being transferred between Vi and Vj at time tfalse otherwiseIn this way, a schedule may be represented as a 3-dimensional array of Booleans, with one dimension(time) in�nite. A somewhat smaller way to represent a schedule is as a set of ordered integer 4-tuples(start time; end time; node a; node b), which e�ectively says that the edge connecting node a to node b willbe transferring a �le from time start time to end time. Page 1 of 17

Control number: 94A solution is de�ned as a valid schedule. That is, a solution successfully transfers all �les, and no node isever overloaded. If we let � (s) � total time for solution s to complete, then makespan� min8solutionss� (s).The set of all s that achieve this minimum is the set of optimal solutions.Please see Appendix C for properties and de�nitions related to this model.5. Testing the ModelIn the problem statement, three situations were presented to apply the model to. Their solutions arepresented here. In all cases, the numbers of the vertices are arbitrary, so they were omitted.Situation AThe following graph represents the systems under consideration and the transfers that must be madebetween them. Each of the 28 nodes represents a departmental computer, and each of the 27 edges representsa �le transfer that must be made daily.

One unit of time is required for each �le transfer, a �le transfer involves both sender and receiver, and acomputer can only be involved in one transfer at a time.Some of the nodes in this graph have degree three; hence, they will be involved in three �le transfers.Since each transfer requires one unit of time, these nodes will require at least three units of time to completeall the necessary transfers. Consider the three sets of edges in the graph represented by the solid, dashed,and dotted edges in this representation of the graph: Page 2 of 17

Control number: 94
Note that no two edges of the same type are incident upon a single node. Hence, all the �le transfersrepresented by the solid edges can be performed simultaneously, as can those represented by the dashededges and those represented by the dotted edges. Performing the transfers along the solid edges, followedby the transfers along the dashed edges, and �nally those along the dotted edges will require three units oftime. As we have seen, at least this much time is required to perform the transfers. Hence, performing thetransfers in this manner is optimal. The makespan is therefore three.Our approach to this problem takes advantage of several properties of this special case. The graph is atree with maximum degree three. Since each transfer takes 1 unit of time, we do not need to worry abouttransfers overlapping in time. They are either simultaneous or completely disjoint. Also, each computer canonly handle one transfer at a time. So during each interval of time, the active edges represent a matchingof nodes, that is, they are vertex disjoint copies of K2 (the complete graph on 2 vertices). Because thistree is of maximum degree 3, such a matching is easy to �nd. Starting with any leaf, we traverse the tree.Whenever we come to a vertex not involved in a transfer, we select an adjacent vertex that has not yet beenvisited. We add the edge between these two vertices to the set of edges which will execute on the �rst step.This traversal guarantees that all the nodes not involved in transfers are leaves.After the �rst time interval, we will be left with only paths. By choosing alternating edges we can �nishin 2 more units of time.This approach will work on any tree with maximum degree 3 for which transfers require one unit oftime and for which each computer can only handle one transfer at a time. So a tree with these propertieswill have a makespan of 3.From this analysis, we can see that there are clearly multiple ways to choose the individual edges, sincethere will be many arbitrary choices regarding which edge to include. Hence, the given schedule is not aunique solution.This approach depends heavily on certain aspects of the problem, and therefore will not work in thegeneral case in which the graph, transfer times, and node capacities are arbitrary. Indeed, �nding themakespan for the general case will prove problematic, since the general problem is NP-complete. (SeeAppendix A for a discussion of this.) Page 3 of 17

Control number: 94Situation BConsider the graph from Situation A, but with the required transfer times as indicated below:
3.2

4.1

9.0

1.2

7.0

3.2

2.1

8.0

4.5

3.6

5.0

4.4

1.0

8.0 7.0

4.01.02.4

8.09.0

4.4

5.0

3.0

7.0

7.0

9.0

4.2Note that this contains the graph
7.0

7.0

7.0

9.0

9.0

9.0The presence of the three transfer times of 7:0 around the central node of this graph implies that 21:0 unitsof time is a lower bound on the amount of time required to perform all the transfers. Consider the edge withvalue 7:0 that is handled second. At least 7:0 units of time are required both before and after it to handlethe two other 7:0-valued edges. Furthermore, since it has a vertex in common with an edge of value 9:0, 9:0units of time will be required either before or after it. Hence, at least 7:0 + 7:0 + 9:0 = 23:0 units of timewill be required, regardless of whether the 9:0 is transferred before or after the second 7:0. So this graphrequires at least 23:0 units of time.Now consider the e�ect of starting with the transfers indicated here by dashed lines, and letting all thesetransfers run to completion (which takes 9:0 units of time): Page 4 of 17

Control number: 94
3.2

4.1

9.0

1.2

7.0

3.2

2.1

8.0

4.5

3.6

5.0

4.4

1.0

8.0 7.0

4.01.02.4

8.09.0

4.4

5.0

3.0

7.0

7.0

9.0

4.2

When all these transfers are complete, we will have the following transfers remaining to perform:
3.2

4.1

9.0

1.2

3.2

2.1

4.5

3.6

5.0

4.4

1.0

4.01.02.4

4.4

5.0

3.0

7.0

7.0

4.2

The time required to �nish the transfers at this point will be the maximum of the times required to handlethe individual subgraphs that remain. Note that all of the remaining subgraphs with two edges can be�nished in 10:2 units of time or less. The path Page 5 of 17

Control number: 94
3.2

5.0

2.4
4.01.0Can be handled in 5:0 + 2:4 = 7:4 units of time by performing the transfers indicated here by dashed lines,then those indicated by solid lines. The �nal path

3.2

2.1

7.0

7.0

4.2Can be handled in 7:0 + 7:0 = 14:0 units of time by performing the transfers indicated by dashed linesfollowed by those indicated by solid lines.So the transfers that remain after we handle the �rst set speci�ed will take 14:0 units of time to complete.Since the �rst set required 9:0 units of time, performing all the transfers in the manner described will require9:0+ 14:0 = 23:0 units of time to complete. Since we have seen that at least 23:0 units of time are required,this solution is optimal. So the makespan is 23:0This problem was solved in a similar manner to the �rst problem, in that a maximal matching waschosen initially. However, the assumptions about execution time from Situation A are no longer valid. So,to some extent this solution comes from the \guess and hope" method|the initial matching was chose toquickly get many large transfers out of the way. It then turned out that the remaining pieces could behandled in a manner which achieved a value which was known to be a lower bound. To obtain this lowerbound, it was important to notice that the obvious lower bound of 21:0 units of time was unattainablebecause of the arrangement and values of some of the edges.The general case is naturally still NP-complete, so this approach will certainly not work in general. Infact, this graph falls into a more speci�c case, that where the graph is a tree and each node has capacity 1,which is also NP-complete despite the additional restrictions. (See Appendix A.)
Page 6 of 17

Control number: 94Situation CWe now have the following graph, which happens to contain the graph from situation B. Also, somenodes are now capable of transferring more than one �le at a time. Nodes with this ability are shown herewith the number of simultaneous transfers they can handle.
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3.2

3

2

2

2

2 2

2

2
3.0

6.0

1.0
4.4

6.6

5.0

5.1

7.0

7.1

8.0

3.6
1.1

3.0

9.0
6.1

8.0

1.0

6.3

4.0

4.4

2.4

7.0

3.2

4.1
5.2

4.5

8.0

4.0

2.1

7.0

9.0
1.2

7.0

7.0 9.0

4.2

3.7

5.0

4.4

9.0

2.4

One of the nodes in this graph has to make three transfers which require 7:0 units of time, and one whichrequires 6:1 units of time. Hence, a total of 27:1 units of time are required for this node to �nish its transfers.It follows that 27:1 is a lower bound on the time required to �nish the transfers indicated in this graph.Now suppose that we begin by running the transfers indicated with dashed lines, and letting these rununtil they are all complete (requiring 9:0 units of time). In addition, let the transfer indicated with a dottedline begin after 7:0 units of time have elapsed.
2

2

2

2 2

2

2
3.2

3

2

2

2

2

2

2

2

2
3.0

6.0

1.0
4.4

6.6

5.0

5.1

7.0

7.1

8.0

3.6
1.1

3.0

9.0
6.1

8.0

1.0

6.3

4.0

4.4

2.4

7.0

3.2

4.1
5.2

4.5

8.0

4.0

2.1

7.0

9.0
1.2

7.0

9.0

4.2

3.7

5.0

4.4

9.0

2.4

7.0 Page 7 of 17

Control number: 94When 9:0 units of time have elapsed, we have the following graph, with the constraint that the transfershown by the dotted line must \begin" executing immediately, since it is really the continuation of a transferstarted earlier and therefore cannot be interrupted:
2

2

2

2 2

2

2
3.2

3

2

2

2

2 2

2

2
3.0

4.4
6.6

5.1

7.1

3.6
1.1

3.0

6.1

1.0

6.3

4.0

4.4

2.4

3.2

4.1
5.2

2.1

7.0

1.2

4.2

3.7

5.0

4.4

2.4

5.0

The isolated edge can then be �nished in 6:6 units of time. The left component can be �nished in 11:4 unitsof time by �rst running the edges indicated here with dashed lines (requiring 4.1 units of time), then thosewith dotted lines (requiring 5.2 units of time), and �nally the solid edge (requiring 2.1 units of time):
2

2

2

2

3.6
1.1

3.0

3.2

4.1
5.2

2.1To handle the large component, let the transfers indicated below with dashed lines run to completion (notethat this obeys our requirement that the transfer already in progress continue running): Page 8 of 17

Control number: 94
2

2 2

2

2

3.2

3

2

2 2

2

2
3.0

4.4

5.1

7.1

6.1

1.0

6.3

4.0

4.4

2.4

7.0

1.2

4.2

3.7

5.0

4.4

2.4

5.0

So after 5:0 units of time beyond the initial 9:0, we are left with the following graph:
2

2
3.2

3

2

2

4.4

5.1

7.1

6.1

1.0

6.3

4.4

2.4

7.0
4.2

3.7Let the transfers indicated by the dashed edges above run to completion. Consider the graph after 6:1 unitsof time have elapsed. We then have the following, where again the dotted edges must be running initially,since they represent the continuation of transfers: Page 9 of 17

Control number: 94
2

2
3.2

3

2

2

1.0

4.4

2.4

7.0

3.7

0.2

1.0

Both isolated edges above can be completed in 7:0 units of time or less. The other two remaining graphscan be handled in 1:0 + 1:0 + 3:2 = 5:2 and 0:2 + 4:4 + 2:4 = 7:0 units of time. Everything that remains atthis point can therefore be completed in 7:0 units of time. So handling the large component that remainsafter the initial round of transfers requires 5:0 + 6:1 + 7:0 = 18:1 units of time. This is the largest of 6:6,11:4, and 18:1, so to complete everything that remains after 9:0 units of time have elapsed will require 18:1units of time. Hence, the total time required to perform these operations is 9:0 + 18:1 = 27:1 units. Sincewe have seen that this is a lower bound on the time required to perform the transfers, the given schedule isoptimal.Our solution for this problem was found in essentially the same manner as that for Situation B, namely,start guessing and see if it works. Though this graph is more formidable, it is helpful that the obvious lowerbound of 27:1 can be achieved. The only obvious category for this problem is the most general case, whichis NP-complete. Hence, it is extremely unlikely that any e�cient algorithm exists for producing solutions toscheduling problems of this variety.6. Strengths and Weaknesses of the ModelGraph models are usually easy to program, because so much work has been done with graph theory.The model allows integer arithmetic for almost everything, due to the time quantum. This almosteliminates any roundo� errors (some may happen during e�ciency calculations), and does eliminate iterativeerror growth.The assumption of Transfer Continuity is a weakness in that it limits the makespan of some graphs.Appendix B deals with what can happen without it.The assumption of Physical Connectivity allow the model to completely ignore the underlying hardware.This can be seen as either a strength (less processor time) or weakness (no error checking), depending onthe reliability of the network.
Page 10 of 17

Control number: 94Appendix A: NP-completeness of Makespan DeterminationConsider the following special case of the general problem of �nding the makespan for an arbitrarynetwork: Let G be a tree representing a network, with times T1; T2; : : : ; Tk assigned to its k edges.If we interpret each edge to represent the time required for a �le transfer between twonodes, what is the minimum time in which all the transfers can be performed, given thatno node can be involved in more than one transfer at once, and that transfers may not beinterrupted and resumed later?This is closely related to the following decision problem:Let G be a tree representing a network, with times T1; T2; : : : ; Tk assigned to its k edges.Let n be a non-negative integer. If we interpret each edge to represent the time requiredfor a �le transfer between two nodes, can all the transfers be performed in time n or less,given that no node can be involved in more than one transfer at once, and that transfersmay not be interrupted and resumed later?If we can solve this decision problem, we can simply try it for each successive value of n until an answer of\yes" is obtained. We are guaranteed to eventually reach such an answer, since no graph can require morethan PTi units of time to complete its transfers.Theorem: The decision problem given above is NP-complete.Proof: We will prove this by reducing from the partition problem, which is:Given integers a1; a2; : : : ; am, is there a partition of these integers into sets A and B sothat Pai2A ai =Pai2B ai?The partition problem is NP-complete (Garey and Johnson 60).Let an instance of the partition problem be given, with integers a1; a2; : : : ; am. IfP ai is odd, then therecannot be a partition into two sets with equal sum. So suppose Pai is even. Take n so that 2n = P ai.Now construct a tree with the following structure and edge weights:
a

2
a

3

a
4

a
m

a
1

n+1

n

n

n+1

1

Suppose the transfers indicated in this graph can be performed in 2n + 1 units of time. This impliesthat the two nodes with edges of values n and n + 1 will spend the entire time engaged in transfers. Sothey can each either perform the n unit transfer followed immediately by the n+1, or the n+ 1 followed bythe n. If they both perform the n+ 1 �rst, then the n unit transfers will not be possible at the same time,because they are incident upon a common node. This means that at least (n+ 1) + n+ n = 3n+ 1 units oftime are required, which contradicts our supposition that the transfers can be performed in 2n+ 1 units oftime. Similarly, if both n unit transfers are performed �rst, the n + 1 unit transfers will not be possible atPage 11 of 17

Control number: 94the same time, and n+ (n+ 1) + (n+ 1) = 3n+ 2 units of time will be necessary. Hence, one of the n+ 1'smust be earlier, and the other must be later. This means that the only time that the 1 unit transfer can beperformed is in the one unit of free time between the two n's.It then follows that the node connecting the ai's is occupied from time n to n+ 1 (assuming the clockstarts at time 0). SinceP ai is 2n, this node must also be continually engaged in transfers. So the durationsof the transfers it performs before handling the 1 unit transfer must sum to n, as must the durations forthose performed after the 1 unit transfer. Let A be the set of the durations for the transfers handled in the�rst half; let B be the set of the durations for the transfers handled in the last half. A and B constitute apartition of a1; a2; : : : ; am, and Xai2A ai = n = Xai2B aiSo if this graph can perform its transfers in 2n+ 1 units of time, there is a partition of a1; a2; : : : ; am suchthat Pai2A ai =Pai2B ai.Now suppose that there is such a partition into sets A and B. As before, if the 1 unit transfer is runat the halfway point we can run the two n+ 1 transfers, the two n unit transfers, and the 1 unit transfer ina total of 2n + 1 units of time. The node joining the ai's is then available for n units of time before the 1transfer, and n units of time afterward. We can handle the transfers corresponding to the elements of A inthe �rst n-unit interval, and those corresponding to B in the last n-unit interval. So if there is a partitionof a1; a2; : : : ; am into A and B such that Pai2A ai =Pai2B ai, then the corresponding graph can performits transfers in 2n+ 1 units of time.Hence, the desired partition exists if and only if the corresponding graph can be executed in 2n+1 unitsof time.Given an instance of the partition problem, the time required to produce a description of the correspond-ing graph is clearly of polynomial order in the size of the input. So the partition problem is polynomial-timereducible to the graph scheduling problem. Also, if we are given an integer N and a proposed schedule forany graph, we can test in polynomial time whether it is a valid schedule requiring no more than time N byverifying that no node is ever involved in two transfers simultaneously, and checking if any transfers happenafter time N . Hence, the graph scheduling problem described above is NP-complete.It then follows that any more general formulation of the scheduling problem is also NP-complete. Inparticular, allowing arbitrary graphs, multiple �le transfer capability, or both results in an NP-completeproblem.
Page 12 of 17

Control number: 94ReferencesGarey, Michael R. and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. New York: W.H. Freeman and Company, 1979.

Page 13 of 17

Control number: 94Appendix B: Improving Network PerformanceThe assumption of Transfer Continuity has a very limiting e�ect on the makespan for many networks.In many cases, a node is idle for, say, 7 minutes, and has a �le that takes 10 to transfer. This opportunityis lost, and the 10 minutes are tacked on the end of its task list. If �les could be fragmented, though, only3 minutes would be added. These time savings could occur at many nodes on the graph.Important to this section is the assumption of Negligible Overhead. If fragmenting a �le into two partsincurred twice as much overhead, performance could su�er.It is clear that an algorithm that did not assume Transfer Continuity (henceforth called the Fragmentalgorithm) would produce a solution at least as good as one that did, because Fragment could always revertto a solution that happened to have no �les fragmented.Fragment would have the opportunity to disregard what previous time steps had done. For an example,the solution to Situation C, above, at one point had \the constraint that the transfer shown by the dottedline must \begin" executing immediately, since it is really the continuation of a transfer started earlier andtherefore cannot be interrupted". Fragment could reject the continuation of this transfer if it determinedthat a di�erent transfer would be more e�cient for that node.Here is a possible Fragment algorithm, in pseudocode: While there are edges left Foreach node in the graph compute an \urgency", such as the sum of the weights of all edgesat that node.While there are free nodes Find the most urgent node, Vi Find the edge to its mosturgent, non-busy neighbor Vj Add that edge to a list of active edges this iteration Markboth nodes as having one more transfer active (in the case Ti > 1 or Tj > 1) Keep trackof how short the shortest edge is for this iterationFor each edge in the \active edges this iteration" list Output part of a schedule sayingthat this edge was active at this interval Decrease time left on edge by shortest time thisiterationThe collection of the output schedules then forms a solution to the graph.

Page 14 of 17

Control number: 94Appendix C: Consequences of the ModelGiven an arbitrary graph that �ts the model,Property: (8i; j 2 ZN)[ei;j = ej;i] This follows from Bidirectionality and the de�nition of ei;jProperty: There exists a solution s. One may construct a solution in the following manner:Enumerate the edges 1 : : :M . Run edge 1 to completion, with no others running. Then runedge 2, and so forth. This will complete every edge, and no collisions will happen. Note that thisis not a very good solution.De�nition: If s is a solution, then the \time reversal" of s, denoted sr , is as follows: if s islisted as 4-tuples (as suggested above), the i'th tuple is (starti; endi; ai; bi). Create sr by forminga list in which the i'th tuple is (� (s) � endi; � (s)� starti; ai; bi).Property: If s is a solution, then sr is a solution. If two transfers didn't conict, they won'tconict if done in reverse order. If all transfers completed, they will complete when done in reverseorder.Property: It is not necessarily true that s = (sr)r If s has some time at the beginning whenall nodes are idle, then upon time reversal, � (s) will shrink by that amount of time. Subsequentreversal thus takes place in a smaller interval.De�nition: the extremely na�ive lower bound on � (s) ismaxi;j2f1:::Ng ei;jObviously, the total time can be no smaller than the largest single edge time, since negative timesare not allowed.Property: There exists an optimal solution s� Because time was quantized, any graph that�ts the model has a makespan that is an integer times the time quantum. That is, e�ectively, aninteger. Let S � fs : sisasolutiong. S 6= ; because there is a solution, as constructed above. Let� (S) � f� (s) : s 2 Sg. Then � (S) is a nonempty set of integers, bounded by the extremely na�ivelower bound as above. Then � (S) has a least element (by de�nition, the makespan). This leastelement has at least one solution s� for which � (s�)=makespan. This s� is therefore an optimalsolution.Property: If s� is an optimal solution, then (s�)r is an optimal solution. Thus it is possibleto have a nonunique optimum. By inspection, an optimal solution has no time when all nodes areidle. Therefore, � (s�) = � ((s�)r) and (s�)r is optimal.De�nition: the na�ive lower bound on � (s) ismaxi2f1:::NgPNj=1 ei;jTiThe sum divided by Ti is a lower bound on the total time each node must spend active. The totaltime may be no smaller than the longest any node spends active. Property: if the graph is a tree,and is at most binary, then an upper bound on the makespan is three times the na�ive lower bound.One can \worsen" the graph so all edges take as long as the longest one, the na�ive lower bound.This equalizes all the times. One can also degrade all Ti to 1. The graph now �ts Situation A,which has a known makespan of three times the constant edge length. Since this graph is morerestricted that the original, the original makespan must be less than or equal to the new one. Note:this not only bounds the makespan, but easily produces a tree that achieves it. Page 15 of 17

Control number: 94Appendix D: Algorithm for situation BNo proof was put forth showing that the class of which situation B was an example was NP-complete.While the general case was shown to be NP-complete, this does not forclude that any given sub-class of theproblem is also NP-complete. It also certainly does not restrict a human using poorly understood (intuitive)methods from coming up with a solution. The restrictions on the class from which situation B appears tobe drawn are: binary tree form, that is every node on the graph has at most measure three and that thereare no cycles in the graph, and each node can only participate in one �le transfer. No further restriction isplaced on the edge weight.Since we do not know that there is not a good, that is polynomial time, algorithm for this class, one wasattempted to be developed. The algorithm is split into two parts. One part determines which edges shouldbe chosen initially. The second part propagates these through time and determines when to start the otheredges.The �rst part looks for a set of edges which can all be done initially and which get the most done asearly and as compactly as possible. To do this, each edge has an \e�ciency" measured for it. This valueis the sum of all edges which can be run currently with the given edge, given by a skip-and-choose-largest(or \skippy") algorithm, divided by the maximum time for any edge in that set. The set having the higheste�ciency measure is used for the initial edges to be run.The \skippy" algorithm for picking a set of concurrent edges to be run initially rests on the assumptionthat an internal node should not be left idle initially. A graph was developed which contradicted thisassumption, but it was decided to develop this algorithm anyway due to a lack of other alternatives. Thisalgorithm is considered a greedy algorithm since it tries to pick the largest possible values �rst.An edge is used as a seed for \skippy." This edge is guaranteed to be in the set of concurrent edges.From this edge, the set of nodes which are have transfers with either of the end nodes of the given edgeis generated. All edges connecting the end nodes with any of the nodes in the set are eliminated fromconsideration of usable edges. The largest available edge o� of each node in the set is determined. Thisalgorithm is recursively called on that edge, being given the available edges, the used nodes, and a markerwhich keeps track of the largest edge. The returned result is added to a running sum of edges. When allnodes have been dealt with, the weight of the initial edge that was passed is added to the running sum andthat total is returned. In the process of determining these values, the available edge and busy node matrixhas been updated.Since the function is recursive, it is up to the original caller to do the division by the largest value.Also, the available edges at the end is the set of edges which was chosen. The set of edges which give thelargest e�ciency is retained and used as the initial edges. Once the initial edges have been determined thepropagating algorithm is employed.The propagating algorithm sets up a schedule with the passed initial edges being started at time zero.Time is propagated until at least one edge completes. A list is made of the completed edges, and they areremoved from the graph. A list is made of the nodes involved in the completed edges. The nodes whichare involved in a �le transfer, and hence busy, at that time are also determined. For each node which justcompleted, the largest edge which can be started, that is which connects to a non-busy node, is started.This cycle of propagating time to the next time an edge stops continues.This algorithm was applied to situation A and situation B. In both cases, it came up with an optimalsolution, but one di�erent than that presented in the body of this paper. For situation A, the graph lookslike: Page 16 of 17

Control number: 94
where the thin solid lines are started at time zero and �nished at time one, the heavy dotted lines are startedat time one and stop at time two, and the medium dotted lines are started at time two and end at timethree. This is an optimal solution, as discussed in the body of this paper.For situation B, a graph like the following results:

80/121

121/151

0/70

70/110

0/80

90/122

80/130

124/134

160/192

80/101

0/80
80/125

125/161

90/102

0/70 70/112

50/94

0/90

160/230

90/160

0/90

112/202

0/50

122/132
130/154

0/80

80/124

For this graph, the times have been quantized. This e�ectively means that all times are multiplied by ten fromthe data presented in the original problem. Each edge is labeled with two numbers separated by a slash. The�rst is the time which the transfer of that edge starts, and the second is the time which the transfer of thatedge ends. This is also an optimal graph, �nishing the last edge at time 230 (23.0 as presented in the body).However, it is di�erent in both the edges it chooses to start with and the way in which it proceeds from there.Page 17 of 17

